Synthesizing Data Structure Transformations from Input-Output Examples

Abstract
We present a method for example-guided synthesis of functional programs over recursive data structures. Given a set of input-output examples, our method synthesizes a program in a functional language with higher-order combinators like map and fold. The synthesized program is guaranteed to be the simplest program in the language to fit the examples.

1. Introduction
The last few years have seen a flurry of research on automated program synthesis [Solar-Lezama et al. 2006; Kunck et al. 2010; Gulwani 2010; Alur et al. 2013; Vechev et al. 2013]. This research area aims to radically simplify programming by allowing users to express their intent as nondeterministic, possibly-incomplete specifications. An algorithmic program synthesizer is then used to discover executable implementations of these specifications.

Inductive synthesis from examples is a particularly important form of program synthesis [Gulwani 2011; Lieferman 2001; Kitzelmann 2009b]. Here, a specification consists of a set of examples of the form \(a \mapsto b \), where \(a \) is a sample input and \(b \) is the output of the desired program on input \(a \). The synthesizer’s task is to “learn” a program from these examples. This form of synthesis is especially appealing to end-users who need to perform programming tasks but lack the expertise or time to write traditional code. A prominent synthesizer of this sort is FlashFill, a feature of Excel 2013 that can generate spreadsheet table transformations from examples [Gulwani 2011]. Example-guided synthesis has also been applied in many other application domains, ranging from bit-level algorithms to geometry constructions to text editing [Gulwani et al. 2011a,b; Lieferman 2001].

In this paper, we present a method for example-guided synthesis of programs that transform recursive data structures such as lists and trees. Such programs arise in many end-user programming scenarios. For instance, many professionals who work with numbers would sometimes want to programmatically manipulate lists or tables of numbers. Trees show up in end-user applications in many guises—concrete examples include family trees, HTML/XML documents, and directory trees in file systems. In fact, some end-user applications may demand data structures that are more general than lists or trees. For instance, a user interested in family trees may sometimes want to analyze trees for an unbounded list of families. In a specific family tree, a node for an individual may be equipped with a list of attributes for that person, and the user may want to transform these lists.

Transformations of recursive data structures are naturally expressed as functional programs. Therefore, our synthesis algorithm targets a functional programming language that permits higher-order functions, combinators like \textit{map}, \textit{fold}, \textit{filter}, pattern-matching, recursion, and a flexible set of primitive operators and constants. The input to our algorithm is a set of input-output examples that define the behavior of the target program on certain small-sized instances. On such an input, the synthesis algorithm either times out or returns a program that fits the examples. In the latter case, the synthesized program is guaranteed to be the least-cost program in our language to fit the examples, according to a cost metric that assigns lower cost to simpler programs (for example, programs that are free of conditional branches).

A key advantage of the above optimality guarantee is that the synthesized program is not over-fitted to the examples. Specifically, given input-output examples \(a_1 \mapsto b_1, \ldots, a_n \mapsto b_n \), our algorithm is unlikely to return a program that does an \(n \)-way case split on its input and returns \(b_i \) whenever the input is equal to \(a_i \). Instead, the algorithm tries to “generalize” the examples into a program that makes minimal use of conditional branches.

Although the synthesis algorithm’s job is fundamentally difficult due to the combinatorial search space of possible programs, our algorithm addresses this challenge using a combination of three technical ideas: (1) type-aware inductive generalization, (2) the use of deduction to guide the solution of subproblems; and (3) best-first enumerative search.
Inductive generalization Rather than blindly searching for a target program, our method generalizes the user-provided examples into a set of hypotheses about this program. A hypothesis is either a concrete program or a “skeleton” that contains placeholders (“holes”) for unknown programs. For instance, a hypothesis \(h \) for a program \(e \) might be of the form \(\lambda x. \text{map} \ f^* x \) where \(f^* \) stands for an unknown program. To synthesize a program from a hypothesis, we must substitute holes such as \(f^* \) by concrete programs.

Our algorithm generates hypotheses in a type-aware manner: We infer a type from the input-output examples and only generate hypotheses that can be concretized to programs of this type. For instance, our algorithm generates the hypothesis \(\lambda x. \text{map} \ f^* x \) only if all input-output examples are of type \(\text{list}(\tau) \rightarrow \text{list}(\tau) \). This strategy often leads to significant pruning of the search space.

Deduction Once our algorithm generates a hypothesis \(h \) in the form of a program skeleton, we must solve one or more subproblems in order to synthesize the unknown functions that appear in \(h \). For this purpose, our algorithm uses automated deduction to efficiently find a solution to the subproblems. In particular, we use deductive reasoning in two ways:

- **Refutation.** First, deduction is used to quickly refute certain hypotheses. For instance, consider an example of the form \([1,1] \rightarrow [2,3]\) and the hypothesis \(h \equiv \lambda x. \text{map} \ f^* x \). Our deduction engine infers that this hypothesis \(h \) cannot be appropriate in this case, as no function maps the number 1 in the input list to two distinct numbers 2 and 3 in the output list.

- **Example inference.** Second, deduction is used to generate new examples that guide the search for missing functions. Consider again the hypothesis \(\lambda x. \text{map} \ f^* x \) and the example \([1,2] \rightarrow [3,4]\). In this case, the deduction engine uses properties of the \(\text{map} \) combinator to infer two examples for \(f^*: 1 \mapsto 3 \) and \(2 \mapsto 4 \). To find \(f^* \), we invoke the synthesis algorithm on these examples.

Best-first enumerative search Whether we are solving the top-level synthesis problem or a subproblem, we will eventually get to a point where inductive generalization and deduction no longer help us. In this case, our method falls back on enumerative search. In particular, we explore the space of all expressions that fit our hypothesis and check whether the generated expressions are consistent with the provided input-output examples. Also, we may find that a specific hypothesis cannot be realized into a program that fits the examples. In this case, our algorithm uses enumerative search to pick a new hypothesis.

Using the principle of Occam’s razor, our search algorithm prioritizes simpler expressions and hypotheses. Specifically, the algorithm maintains a “frontier” of candidate expressions and hypotheses that need to be explored next and, at each point in the search, picks the least-cost item from this frontier. We show that this search strategy allows us to synthesize the simplest program that fits the examples.

Results We have implemented our algorithm in a tool called \(\lambda^2 \), and we empirically demonstrate that our technical insights can be combined into a scalable algorithm\(^1\). The benchmarks for our experiments include over 40 synthesis problems involving lists, trees, and nested data structures such as lists of lists and trees of lists. We show that \(\lambda^2 \) can successfully solve these benchmarks, typically within a few seconds. The programs that \(\lambda^2 \) synthesizes can be complex but also elegant. For example, \(\lambda^2 \) is able to synthesize a program that is believed to be the world’s earliest functional pearl [Danvy and Spivey 2007].

Organization The paper is organized as follows. In Sec. 2, we present three motivating examples for our approach. After formalizing the problem in Sec. 3, we present our synthesis algorithm in Sec. 4. An evaluation is presented in Sec. 5, and related work is discussed in Sec. 6. Finally, we conclude with some discussion in Sec. 7.

2. Motivating examples

In this section, we illustrate our method’s capabilities using three examples.

2.1 Manipulating lists of lists

Consider a high-school teacher who wants to modify a collection of student scores. These scores are represented as a list \(x = [l_1,\ldots,l_n] \) of lists, where each list \(l_i \) contains the \(i \)-th student’s scores. The teacher’s goal is to write a function \(\text{dropmins} \) that transforms \(x \) into a new list where each student’s lowest score is dropped. For instance, we require that

\[
\text{dropmins} \hspace{1em} [[1,3,5],[5, 3, 2]] = [3, 5], [5, 3].
\]

Our \(\lambda^2 \) system can synthesize the following implementation of this function:

\[
\text{dropmins}\hspace{1em} x = \text{map} \hspace{1em} f \hspace{1em} x
\hspace{1em} \text{where}\hspace{1em} f\hspace{1em} y = \text{filter} \hspace{1em} g \hspace{1em} y
\hspace{1em} \text{where}\hspace{1em} g\hspace{1em} z = \text{foldl} \hspace{1em} h \hspace{1em} \text{False} \hspace{1em} y
\hspace{1em} \text{where}\hspace{1em} h\hspace{1em} t\hspace{1em} w = t \mid\mid (w < z)
\]

Here, \(\text{foldl} \), \(\text{map} \), and \(\text{filter} \) refer respectively to the standard left-fold, map, and filter operators\(^2\).

In this example, note the complex interplay between scoping and higher-order functions where the \(\text{map} \), \(\text{filter} \), and \(\text{fold} \) operations are nested in a highly nontrivial way. For example, the occurrence of \(z \) in line 4 is bound by the enclosing definition of \(g \), and the occurrence of \(y \) in line 3 is bound by the enclosing definition of \(f \).

The input-output examples used in the synthesis task are:

\[
[] \rightarrow []
\]

\(^{1}\) The name \(\lambda^2 \) stands for “Learning Lambdas”

\(^{2}\) While \(\lambda^2 \) generates its outputs in a \(\lambda \)-calculus, we use a Haskell-like notation for readability.
Consider a user who wants to write a program to mine family trees. A node in such a tree represents a person; the node is annotated with a set of attributes including the year when the person was born. Given a family tree, the user’s goal is to generate a list of persons in the family who were born between 1800 and 1820.

Suppose nodes of a family tree are labeled by pairs \((v, by)\), where \(by\) is the birth year of a particular person and \(v\) represents the remaining attributes of that person. Given such a family tree, our synthesis task is to produce a program that generates a list of all labels \((v, by)\) that appear in the tree and satisfy the predicate \(pr \equiv \lambda by. 1800 \leq by \leq 1820\).

\(\lambda^2\) synthesizes the following program for this task.

```plaintext
selectnodes x = foldt f [] x
  where f z y = foldl (y:(concat z)) z
        where g t = filter pr t
```

Here, the operator \(foldt\) performs a fold over an unordered tree, and \(concat\) takes in a list of lists \(l_i\) and returns the union of the \(l_i\)-s. Note that the predicate \(pr\) is external to the function. The user supplies the definition of this predicate along with the examples.

Let us represent trees using a bracket notation: \(\langle\rangle\) represents the empty tree, and \(<lab S T>\) is a tree rooted at \(lab\) and containing child subtrees \(S\) and \(T\). The examples needed to synthesize this program are as follows:

\[
\begin{align*}
\langle\rangle & \rightarrow [] \\
\langle(a, 1760), (b, 1803)\rangle & \rightarrow [(b, 1803)] \\
\langle(a, 1771), (b, 1815)\rangle & \rightarrow [(b, 1815), (c, 1818)] \\
\langle(a, 1812), (b, 1846)\rangle & \rightarrow [(c, 1852)] \rightarrow [(a, 1812)]
\end{align*}
\]

Here, \(a\), \(b\), and \(c\) are symbolic constants that represent arbitrary values of \(v\) in labels \((v, by)\). Note that there exist other definitions of \(pr\) – different from the one that we are using here – under which the synthesized program fits the examples. For instance, suppose we replaced our definition of \(pr\) by the predicate \(\lambda by. by \mod 3 = 0\) in the synthesized program. The resulting program would still satisfy the examples. The reason why \(\lambda^2\) does not output this alternative program is that it considers external predicates to be of especially low cost and prioritizes them during synthesis. This strategy formalizes the intuition that the user prefers the supplied predicate to appear in the synthesized program.

2.3 A functional pearl

We have used \(\lambda^2\) to synthesize a program originally invented by Barron and Strachey 1966. Danvy and Spivey call this program “arrestingly beautiful” and believe it to be “the world’s first functional pearl” [Danvy and Spivey 2007].

Consider a function \(cprod\) whose input is a list of lists, and whose output is the Cartesian product of these lists. Here is an input-output example for this function:

\[
\begin{align*}
\langle[1, 2, 3], [4, 5], [6]\rangle & \rightarrow \langle[1, 4, 5], [1, 5, 6], [2, 4, 5], [2, 6], [3, 4, 6], [3, 6]\rangle.
\end{align*}
\]

Barron and Strachey implement this function as follows[Barron and Strachey 1966]:

```plaintext
cprod xss = foldr f [] xss
  where f xs yss = foldr g [] xs
        where g x yss = foldl h yss yss
```

Here, \(foldr\) is the standard right-fold operation. For an article-length explanation of how this function works, see [Danvy and Spivey 2007].

We used \(\lambda^2\) to synthesize the Cartesian product function from the following examples:

\[
\begin{align*}
[] & \rightarrow [[]] \\
[[1]] & \rightarrow [] \\
[[1], [1]] & \rightarrow [] \\
[[1, 2, 3], [4], [5, 6]] & \rightarrow [[1, 4, 5], [1, 4, 6], [2, 4, 5], [2, 4, 6], [3, 4, 5], [3, 4, 6]].
\end{align*}
\]

Remarkably, the program that \(\lambda^2\) synthesizes using these examples is precisely the one given by Barron and Strachey.

3. Problem formulation

In this section, we formally state our synthesis problem.

Programming language Our method synthesizes programs in a \(\lambda\)-calculus with algebraic types and recursion. Let us consider signatures \(\langle Op, Const, A\rangle\), where \(Op\) is a set of primitive operators, \(Const\) is a set of constants, and \(A\) is a set of equations that relate operators and constants. The syntax of programs \(e\) over such a signature is given by:

\[
e ::= x | c | \lambda x.e' | e_1 e_2 | rec f.(\lambda x.e') | (e_1, e_2) | e' + e' |
\]

\[
\{l_1 : e_1, \ldots, l_k : e_k\} | e'.l | \{l_i(e_i)\} |
\]

\[
machine e with \{l_i(x_i) \Rightarrow e'_i, \ldots, l_k(x_k) \Rightarrow e'_k\}
\]

Here, \(x\) and \(f\) are variables, \(+ \in Op\), and \(c \in Const\).

The syntax has standard meaning; in particular:

1. \(rec\ f.(\lambda x.e)\) is a recursive function \(f\).
2. \(e = \{l_1 : e_1, \ldots, l_k : e_k\}\) is a record whose field \(l_i\) has value \(e_i\). We have \(e.l_i = e_i\).
3. \(e = \{l_i(e_i)\}\) is a variant labeled \(l_i\). The construct “\machine e with \ldots\” performs ML-style pattern-matching.

We assume the standard definition of free variables. A program is closed if it does not have any free variables.

As the operational semantics of the language is standard, we do not discuss it in detail. We simply assume that we have a relation \(\leadsto\) such that \(e_1 \leadsto e_2\) whenever \(e_1\) evaluates to \(e_2\) in one or more steps. Our programs are typed using
Examples satisfies the examples — i.e., for each input to our synthesis problem is a set

The synthesis problem

Let an a term

Cost model

Each program e in the language has a cost C(e) ≥ 0. This cost is defined inductively. Specifically, we assume that each primitive operator ⊕ and constant e has a known, positive cost. Costs for more complex expressions satisfy constraints like the following (we skip some of the cases for brevity):

- C(⊕ e) > C(⊕) + C(e)
- C(λx.e) > C(e)
- C(e1, e2) > C(e1) + C(e2)
- C(x) = 0. Intuitively, we assign costs to the definition, rather than the use, of variables.

The synthesis problem

Let an input-output example be a term a_i ↦ b_i, where a_i and b_i are closed programs. The input to our synthesis problem is a set E_{in} of such examples. Our goal is to compute a minimal-cost closed program e that satisfies the examples — i.e., for each i, we have (e a_i) ↦ b_i. In what follows, we refer to e as the target program.

Note that this problem formulation biases our synthesis procedure towards generating simpler programs. For example, since our implementation associates a higher cost with the match construct than the fold operators, our implementation favors fold-based implementations of list-transforming programs over those that use pattern-matching.

Hypotheses

The concept of hypotheses about the structure of the target programs is key to our approach. Intuitively, a hypothesis is a program that may have placeholders for missing expressions. Formally, a hypothesis is a program that possibly has free variables. Free variables in a hypothesis are also known as holes, and a hypothesis with holes is said to be open. For instance, x and λx.f x are open hypotheses. In contrast, hypotheses that do not contain free variables are said to be closed. For example, λx. map (λy. y + 1) x is a closed hypothesis.

A hypothesis h is typed under a typing context that assigns types to its holes. Given a type τ, we say that h is consistent with τ if there exists a typing context under which the type of h equals τ. This property can be decided using a standard type inference algorithm.

4. Synthesis algorithm

This section describes our procedure for solving the synthesis problem from Sec. 3.

4.1 Algorithm architecture

Our synthesis procedure performs an enumerative search that interleaves inductive generalization and deductive reasoning. Specifically, the procedure maintains a priority queue Q of synthesis subtasks of the form (e, f, E), where e is a hypothesis, f is a hole in the hypothesis, and E is a set of examples. The interpretation of such a task is:

Find a replacement e* for the hole f such that e* satisfies the examples E, and the program e[e*/f] obtained by substituting f by e* satisfies the top-level input-output examples E_{in}.

The procedure iteratively processes subtasks in the task pool Q. Figure 1 gives an overview of our strategy for solving each subtask (e, f, E). First, our algorithm performs inductive generalization over examples E to produce a lazy stream of hypotheses H about candidates e* that can replace f. As mentioned earlier, these hypotheses are generated in a type-aware way, meaning that we rule out hypotheses that are inconsistent with the inferred type τ of examples E.

Next, for each hypothesis h in H, our algorithm applies deductive reasoning to check for potential conflicts. If the hypothesis is closed, then a conflict arises if e does not satisfy the top-level (user-provided) input-output examples E_{in}. In this case, the procedure simply picks a new synthesis subtask from the task pool Q. This corresponds to a form of backtracking in the overall algorithm.
SYNTHESIZE(E_{in})
1 $Q \leftarrow \{(f, f, E)\}$ // f is a fresh variable name
2 while $Q \neq \emptyset$
3 do pick (e, f, E) from Q such that e has minimal cost
4 if e is closed
5 then if CONSISTENT(e, E_{in})
6 then return e
7 else continue
8 $\tau \leftarrow$ TYPEINFERENCE(E)
9 $H \leftarrow$ INDUCTION(τ)
10 for $h \in H$
11 do $e' \leftarrow e[1/f]$
12 if e' is closed
13 then $Q \leftarrow Q \cup \{(e', \bot, \emptyset)\}$
14 else for $f^* \in$ HOLE(e')
15 do $E^* \leftarrow$ DEDUCE(e', f^*, E)
16 if $E^* = \emptyset$ then break
17 $Q \leftarrow Q \cup \{(e', f^*, E^*)\}$
18 return \bot

Figure 2. Synthesis procedure.

If the hypothesis is open, a conflict indicates that the provided input-output examples violate a known axiom of a primitive operator used in the hypothesis (i.e., there is no way in which the hypothesis can be successfully completed). Upon conflict detection, our procedure again backtracks and considers a different inductive generalization.

If hypothesis h is open and no conflicts are found, the procedure generates new subtasks for each hole f in h and uses deduction to learn new input-output examples. In more detail, each new subtask is of the form (e', f^*, E^*) where e' is a new hypothesis, f^* is a new hole to be synthesized, and E^* is the set of inferred input-output examples for f^*. This new subtask is now added to the task pool Q.

The procedure terminates once the search selects a subtask where the hypothesis is closed and which does not conflict with the top-level examples E_{in}.

Figure 2 gives pseudocode for the overall synthesis algorithm. Here, Q is a priority queue of tasks (e, f, E) sorted according to the cost of hypothesis e. In each iteration of the outer loop, we pick a minimum-cost subtask (e, f, E) from task pool Q. Now, if e is a closed hypothesis, we use the routine CONSISTENT at line 5 to deductively check whether e satisfies examples E_{in}. If this is the case, e must be a minimum-cost implementation consistent with E_{in}; hence we return e as a solution to the synthesis problem. On the other hand, if e is not consistent with E_{in}, we continue with a different candidate in the task pool Q.

Now, if e is an open hypothesis, we still need to synthesize the free variable f in e. For this purpose, we use the TYPEINFERENCE procedure at line 8 to infer the type of f from examples E and then call INDUCTION to perform type-aware inductive generalization. Suppose H is a list of possible inductive generalizations for f. Now, we obtain a new hypothesis e' by replacing f with a hypothesis $h \in H$. If e' is closed, there are no new unknowns to synthesize; hence, we add a single subtask (e', \bot, \emptyset) to the task pool Q.

On the other hand, if e' is an open hypothesis, we generate new subtasks for synthesizing each hole in e'. Here, the procedure DEDUCE infers new examples for a specified hole f^* in e'. If a conflict is detected (i.e., e' is not consistent with a known axiom), then DEDUCE returns \bot, which causes backtracking from the current hypothesis. If no conflicts are detected, we add new subtasks of the form (e', f^*, E^*) to Q.

4.2 Hypothesis Generation

This section explains the hypothesis generation step of the synthesis algorithm in more detail.

The first step of inductive generalization is to decide if we want to generate a closed or open hypothesis. Since open hypotheses are used to encapsulate common data structure transformation patterns, we only introduce them when the input examples correspond to recursive data structures. In particular, if the inferred type of the transformation is $\tau_1 \rightarrow \tau_1$ and τ_1 and τ_2 are primitive types (e.g., int \rightarrow int), then our procedure only generates closed hypotheses.

The open hypotheses are drawn from the family of combinators shown in Figure 3. The first column of Figure 3 shows the hypothesis which serves as our inductive generalization, and the second column shows the definition of the combinator used in the hypothesis. Observe that the free variables in the first column correspond to new synthesis subproblems.

Open hypothesis generation is guided by the inferred type of the input-output examples. For instance, suppose we have the examples $\{[0] \mapsto 0, [1] \mapsto 1, [1, 2] \mapsto 3\}$. Here, since the inferred type of the transformation is list[int] \rightarrow int, our hypothesis generator immediately rules out the first three combinators from Figure 3 from being possible generalizations. The use of types to guide generalization is an important feature of our procedure and greatly helps to keep the search space manageable (see Sec. 5).

If the inferred type of the input-output examples is not compatible with any of the open hypotheses from Figure 3, our synthesis procedure instead generates closed hypotheses. This is done by lazily enumerating a stream of candidate expressions that are compatible with the inferred type of the input-output examples. The enumeration procedure generates the candidate expressions in increasing order of cost.

Our hypothesis generator also uses a rewrite system to avoid enumerating syntactically distinct but semantically equivalent hypotheses. Given a candidate hypothesis e, this rewrite system produces either the original hypothesis e or an equivalent, but lower-cost hypothesis e'. As our goal is to find a minimal-cost program, we can safely prune e from the search space in the latter case. For example, suppose our signature has addition as a primitive operator, 1 and 0 as constants, and the axiom $\forall x. x + 0 = 0 + x = 1$. In this case, our rewrite system will make sure that $1 + 0$ is not generated as a closed hypothesis.
Definition of Combinator

We now explain the **EDUCE** algorithm from Figure 2. Recall that **EDUCE** is sound, if for every unknown f, f is an inductive generalization of E and completeness as follows:

$$E \vdash f \mid \equiv \mid$$

inferring new input-output examples and detecting conflicts.

Problem: defined by E, E of input-output examples, and let E be a set of input-output examples for unknown h, then E' is a new set of input-output examples for unknown f used in expression h. Here, E' may also be \bot, indicating that a conflict is detected and that the subproblem defined by f does not have a solution. Note that the soundness of deduction implies that, if $E, h \vdash f : \bot$, then h cannot be a correct inductive generalization for examples E.

Figure 3 shows the deductive reasoning performed for hypotheses involving the map, mapt and filter combinators. The first three rules in Figure 4 concern hypotheses involving map. Specifically, the first rule deduces a conflict if E contains an input-output example of the form $A \rightarrow B$ such that A and B are lists but their lengths are not equal. Similarly, the second rule deduces \bot if E contains a pair of input-output examples $A \rightarrow B$ and $A' \rightarrow B'$ such that $A_i = A'_i$ but $B_i \neq B'_i$. Since function f provided as an argument to the map combinator must produce the same output for a given input, the existence of such an input-output example indicates the hypothesis must be incorrect. Finally, the third rule in Figure 4 shows how to deduce new examples for f when no conflicts are detected. Specifically, for an input-output example of the form $A \rightarrow B$ where A and B are lists, we can deduce examples $A_i \mapsto B_i$ for function f. A consequence of incompleteness is that our synthesis procedure must check that a closed hypothesis is consistent with the user-provided example set E_{in}. This is done in line 5 of the **SYNTHESIZE** procedure in Figure 2.

4.3 **Inference of new examples using deduction**

We now explain the **EDUCE** procedure used in the synthesis algorithm from Figure 2. Recall that **EDUCE** is used for inferring new input-output examples and detecting conflicts. The deduction procedure used in our synthesis algorithm is **sound** but **incomplete**. In this context, we define soundness and completeness as follows:

Definition 1. (Soundness of deduction) Let E be a set of input-output examples, and let h be a hypothesis that is an inductive generalization of E. The **EDUCE** procedure is sound, if for every unknown f in h, whenever $\text{EDUCE}(h, f, E) = E'$ and the synthesis problem defined by E' and f does not have a solution, then the synthesis problem defined by E and h also does not have a solution.

In other words, the deduction procedure is sound if the non-existence of a solution to any synthesis subtask implies the non-existence of a solution to the original problem. Hence, soundness implies that deduction will never cause our synthesis procedure to reject a valid open hypothesis. However, since our deduction procedure is not complete, the existence of a solution to all synthesis subtasks does not imply the existence of a solution to the original problem. More technically, we define completeness as follows:

Definition 2. (Completeness of deduction) Let E be a set of examples, and let h be a hypothesis that is an inductive generalization of E. The completeness of **EDUCE** means that, if the synthesis problem defined by E, h does not have a solution, then there exists some unknown f in h such that (i) **EDUCE**(h, f, E) = E' and (ii) the synthesis problem defined by E', f does not have a solution.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Definition of Combinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda x. \text{map} , f , x$</td>
<td>$\text{map} :: (a \rightarrow b) \rightarrow \text{list}[a] \rightarrow \text{list}[b]$</td>
</tr>
<tr>
<td>$\lambda x. \text{mapt} , f , x$</td>
<td>$\text{mapt} :: (a \rightarrow b) \rightarrow \text{tree}[a] \rightarrow \text{tree}[b]$</td>
</tr>
<tr>
<td>$\lambda x. \text{filter} , f , x$</td>
<td>$\text{filter} :: (a \rightarrow \text{bool}) \rightarrow \text{list}[a] \rightarrow \text{list}[a]$</td>
</tr>
<tr>
<td>$\lambda x. \text{foldl} , f , e , x$</td>
<td>$\text{foldl} :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow \text{list}[a] \rightarrow b$</td>
</tr>
<tr>
<td>$\lambda x. \text{foldr} , f , e , x$</td>
<td>$\text{foldr} :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow \text{list}[a] \rightarrow b$</td>
</tr>
<tr>
<td>$\lambda x. \text{foldt} , f , e , x$</td>
<td>$\text{foldt} :: (\text{list}[b] \rightarrow a \rightarrow b) \rightarrow b \rightarrow \text{tree}[a] \rightarrow b$</td>
</tr>
<tr>
<td>$\lambda x. \text{recl} , f , e , x$</td>
<td>$\text{recl} :: (a \rightarrow \text{list}[a] \rightarrow b) \rightarrow b \rightarrow \text{list}[a] \rightarrow b$</td>
</tr>
</tbody>
</table>

Figure 3. Family of combinators from which we draw our open hypotheses.
\[E = \bigcup_{i \leq n} \{ [a_1, \ldots, a_{g(i)}] \Rightarrow [b_1, \ldots, b_{h(i)}] \} \]

\[\exists i. (1 \leq i \leq n \land h(i) \neq b(i)) \]

\[E, \lambda x. \text{map } f x \vdash f : \perp \]

\[E = \bigcup_{i \leq n} \{ [a_1, \ldots, a_{g(i)}] \Rightarrow [b_1, \ldots, b_{g(i)}] \} \]

\[(a, b) \in E' \land (a', b') \in E' \land a = a' \Rightarrow b = b' \]

\[E, \lambda x. \text{map } f x \vdash f : E' \]

\[\exists i, j, k, m. \left(\begin{array}{c} 1 \leq i \leq n \land 1 \leq j \leq n \land 1 \leq k \leq \text{size}(s_i) \land 1 \leq m \leq \text{size}(t_i) \land s_{ik} = s_{jm} \land t_{ik} \neq t_{jm} \end{array} \right) \]

\[E, \lambda x. \text{map } f x \vdash f : \perp \]

\[E = \bigcup_{i \leq n} \{ [a_1, \ldots, a_{g(i)}] \Rightarrow [b_1, \ldots, b_{h(i)}] \} \]

\[\exists i. (1 \leq i \leq n \land b(i) \neq g(i)) \]

\[E, \lambda x. \text{filter } f x \vdash f : \perp \]

\[E = \bigcup_{i \leq n} \{ [a_1, \ldots, a_{g(i)}] \Rightarrow [b_1, \ldots, b_{h(i)}] \} \]

\[\forall i. 1 \leq i \leq n \Rightarrow h(i) \leq g(i) \]

\[\text{filter } f = \{ x \mapsto \text{true} \mid x \in A \land x \in B \land A \Rightarrow B \in E \} \]

\[\text{filter } f = \{ x \mapsto \text{false} \mid x \in A \land x \in B \land A \Rightarrow B \in E \} \]

\[E, \lambda x. \text{filter } f x \vdash f : \text{filter } f \cup \text{filter } f \]

\[\text{Figure 4. Deductive reasoning for map, mapf, and filter} \]

Example 1. Consider the input-output examples \([1, 2] \Rightarrow [2, 3] \) and \([2, 4] \Rightarrow [3, 5] \) and the hypothesis \[\lambda x. \text{map } f x \]. Using the third rule from Figure 4, we deduce the following new examples for \(f \): \(\{1 \mapsto 2, 2 \mapsto 3, 4 \mapsto 5 \} \).

Example 2. Consider the input-output examples \([1] \Rightarrow [1] \) and \([2, 1, 4] \Rightarrow [2, 3, 7] \) and the hypothesis \[\lambda x. \text{map } f x \]. We can derive a conflict using the second rule of Figure 4 because \(f \) maps input 1 to different values 1 and 3. Since the rules for mapf are similar to those for map, we do not explain them in detail. We use the notation \(s_i \neq t_i \) to indicate that trees \(s_i \) and \(t_i \) have incompatible “shapes”.

The last three rules of Figure 4 describe the deduction process for the filter combinator. Since \[\lambda x. \text{filter } f x \] removes those elements of \(x \) for which \(f(x) \) evaluates to false, the length of the output list cannot be greater than that of the input list. Hence, the first rule for filter derives a conflict if there exists an example \(A \Rightarrow B \) such that the length of list \(B \) is greater than the length of list \(A \). Similarly, the second rule for filter deduces \(\perp \) if there is some element in list \(B \) that does not have a corresponding element in list \(A \). If no conflicts are detected, the last rule of Figure 4 infers input-output examples for \(f \) such that an element \(x \) is mapped to true if and only if it is retained in output list \(B \).

Example 3. Consider the input-output example \([1, 2] \Rightarrow [1, 2, 1, 2] \) and the hypothesis \[\lambda x. \text{filter } f x \]. Our procedure deduces a conflict using the first rule for filter.

Example 4. Consider the input-output example \([1, 2, 3] \Rightarrow [1, 3, 2] \) and the hypothesis \[\lambda x. \text{filter } f x \]. This time, our procedure deduces \(\perp \) using the second rule for filter.

Example 5. Consider the examples \([1, 2, 3] \Rightarrow [2] \) and \([2, 8] \Rightarrow [2, 8] \) and the hypothesis \[\lambda x. \text{filter } f x \]. Using the last rule of Figure 4, we derive the following examples for \(f \): \(\{1 \mapsto \text{false}, 2 \mapsto \text{true}, 3 \mapsto \text{false}, 8 \mapsto \text{true} \} \).

We now describe the deductive reasoning performed for the foldl and foldr combinators (we collectively refer to these operators as fold). Consider a hypothesis of the form \[\lambda x. \text{fold } f e x \] and suppose we want to learn new input-output examples characterizing \(f \). We have found that deducing new examples for \(f \) in a sound and scalable way is only possible if the expression \(e \) is a constant, as opposed to a function of \(x \). Therefore, our procedure generates two separate hypotheses involving fold:

1. \[\lambda x. \text{fold } f e x \quad \text{where } e \text{ is a constant} \]
2. \[\lambda x. \text{fold } f e x \quad \text{where } e \text{ is an arbitrary expression} \]

Our deduction engine can make inferences and generate useful examples only for case (1). The second case relies on enumerative search, which is possible even without examples. As new examples can prune the search space significantly, synthesis is more likely to be efficient in case (1), and we always try the first hypothesis before the second one. In what follows, we discuss the inference rules for fold under the assumption that it has a constant base case.
Figure 5 describes the deduction process for combiners involving \texttt{foldl}, \texttt{foldr} and \texttt{rec} using set inclusion constraints. Specifically, the set \mathcal{E}' in these rules denotes the smallest set satisfying the generated constraints. Consider the first two rules of Figure 5. By the first rule, if there are two input-output examples of the form $[] \mapsto b$ and $[a] \mapsto b'$ such that $b \neq b'$, this means that we cannot synthesize the program using a fold operator with a constant base case; hence we derive \perp. Otherwise, if there is an example $[a] \mapsto b$, we infer the initial seed value for fold to be b.

Let us now consider the third rule (i.e., \texttt{foldr}), and suppose we have an example $E_1 : [a_1, \ldots, a_n] \mapsto b$ and another example $E_2 : [a_1, \ldots, a_n] \mapsto b'$. Now, observe the following equivalences:
\[
\texttt{foldr}
\begin{align*}
& f y [a_1, \ldots, a_n] \\
& \equiv f (\texttt{foldr} f y [a_1, \ldots, a_n]) a_1 \quad \text{(def. of \texttt{foldr})} \\
& \equiv f' a_1 b' \quad \text{(from } E_2) \\
& \equiv b \quad \text{(from } E_1)
\end{align*}
\]

Since we have $f' a_1 = b$, it is sound to deduce the input-output example $(b', a_1) \mapsto b$ for the unknown function f.

As shown in the fourth rule, we can apply similar reasoning to \texttt{foldl}. Suppose we have the following examples:
\[
E'_1 : [a_1, \ldots, a_n] \mapsto b \\
E'_2 : [a_1, \ldots, a_{n-1}] \mapsto b'
\]

We can again expand the recursive definition of \texttt{foldl} to obtain the following equivalences:
\[
\begin{align*}
\texttt{foldl}
& f y [a_1, \ldots, a_n] \\
& \equiv f a_n (\texttt{foldl} f y [a_1, \ldots, a_{n-1}]) \quad \text{(property of } \texttt{foldl}) \\
& \equiv f a_n b' \quad \text{(from } E'_2) \\
& \equiv b \quad \text{(from } E'_1)
\end{align*}
\]

Hence, we can infer the input-output example $(a_n, b') \mapsto b$ for function f. However, as illustrated by the following example, these inference rules are not complete.

Example 6. Consider the hypothesis $\lambda x. \texttt{foldl} f y x$, and the following input-output examples provided by the user:
\[
\begin{aligned}
[0] & \mapsto 0 \\
[1] & \mapsto 1 \\
[2, 3] & \mapsto 5 \\
[1, 2, 3] & \mapsto 6 \\
[2, 3, 5] & \mapsto 10
\end{aligned}
\]

Using the inference rules from Figure 5, we infer the following input-output examples for f:
\[
\begin{aligned}
(1, 0) & \mapsto 1, \\
(2, 1) & \mapsto 3, \\
(3, 3) & \mapsto 6, \\
(5, 5) & \mapsto 10
\end{aligned}
\]

Observe that there is information provided by $[2, 3] \mapsto 5$ that is not captured by the inferred examples for f.

The next three rules for \texttt{foldt} are very similar to \texttt{foldl} and \texttt{foldr}; hence, we do not discuss them in detail. The last rule in Figure 5 infers input-output examples for function f used in the general recursion combinator. Recall from Figure 3 that, given an input list of the form $x : x s$, the general recursion combinator applies function f to pair $(x, x s)$. Hence, for any input example of the form $[a_1, \ldots, a_n] \mapsto b$, we can deduce the example $(a_1, [a_2, \ldots, a_n]) \mapsto b$ for unknown function f.

Figure 5. Deduction for \texttt{fold} and general recursion.

4.4 Optimality of synthesis

Now we show that procedure SYNTESIZE from Figure 2 correctly solves the synthesis problem defined in Sec. 3.

Theorem 1. If SYNTESIZE returns program e on examples \mathcal{E}, then e is a minimal-cost closed program that satisfies \mathcal{E}.

Proof. The program e is guaranteed to be closed and satisfy the input-output examples by lines 4-6 in the procedure.

We prove optimality of e by contradiction. Assume there is a closed e' such that $e \neq e'$, $C(e') < C(e)$ and e' satisfies \mathcal{E}. Consider the point in time when SYNTESIZE picks a task of the form (e, f, e') out of the task pool Q. A task of the form (e', f', e') cannot be in Q at this time or at any point of time until this point. Otherwise, because of line 3, SYNTESIZE would have picked (e', f', e') and returned e'.

However, Q must, at this point, contain an open hypothesis h whose free variables can be instantiated to produce e'. This is because the pruning mechanisms in SYNTESIZE are sound; as a result, the procedure does not rule out hypotheses from which satisfactory programs can be generated.

We know that $C(h) \geq C(e)$; otherwise SYNTESIZE would have picked the task involving h in this loop iteration. However, note that in our cost model (Sec. 3), primitive operators and constants have positive costs and free variables have cost 0. Thus, any program of form $b[b'/f]$ must have strictly higher cost than h. This means that $C(e') > C(h)$, which implies $C(e') > C(e)$. This is a contradiction. \qed
5. Evaluation

We have implemented the proposed synthesis algorithm in a tool called λ^2, which consists of ~4,000 lines of OCaml code. In our current implementation, the cost function prioritizes open hypothesis generation over brute-force search for closed hypotheses. In particular, this is done by using a weighting function \(W(c_a, c_b) = c_a + 1.5^{c_b} \) where \(c_a \) and \(c_b \) are the total costs of expressions obtained through open and closed hypothesis generation respectively. Intuitively, the weighting function attempts to balance the relative value of continued generalization and exhaustive search — the exponential term reflects that the exhaustive search space grows exponentially with maximum cost.

To evaluate our synthesis algorithm, we gathered a corpus of over 40 data structure manipulation tasks involving lists, trees, and nested data structures such as lists of lists or trees of lists. As described in the last column of Figure 6, most of our benchmarks are textbook examples for functional programming and some are inspired by end-user synthesis tasks, such as those mentioned in Sec. 1 and Sec. 2.

Our main goal in the experimental evaluation is to assess (i) whether λ^2 is able to synthesize the examples we collected, (ii) how long each synthesis task takes, and (iii) how many examples need to be provided by the user for λ^2 to generate the intended program. To answer these questions, we conducted an experimental evaluation by running λ^2 over our benchmark examples on an Intel(R) Xeon(R) E5-2430 CPU (2.20 GHz) with 8GB of RAM. The columns labeled “Random examples” and “Runtime (no types)” in Figure 6 respectively show the minimum number of examples and runtime for each benchmark when the examples are generated randomly. The corresponding output is generated by running a known implementation of the benchmark on this input.

Now, to determine the minimum number of examples that λ^2 needs to synthesize the benchmark program, we run the random example generator to generate \(k \) independent input-output examples. Given an example set of size \(k \), we then check whether λ^2 is able to synthesize the correct function in 90% of the trials. If so, we conclude that the lay user should be able to successfully synthesize the target program with an example set of size \(k \); and set the runtime of the benchmark to be the median runtime on these trials. Otherwise, we increase the value of \(k \) and repeat this process.

The column labeled “Runtime (no types)” in Figure 6 shows the running time of the algorithm when we do not perform inductive generalization in a type-aware way. As shown by the data, types have a huge impact on the running time of the synthesis algorithm. In fact, without type-aware inductive generalization, more than 60% of the benchmarks do not terminate within the provided 10 minute resource limit.

Impact of deduction. We also conducted an experiment to evaluate the effectiveness of deduction in the overall synthesis algorithm. Recall from Sec. 4 that our algorithm uses deduction for (i) inferring new input-output examples, and (ii) refuting incorrect hypotheses. To evaluate the impact of deduction, we modified our algorithm so that it does not perform any of the reasoning described in Sec. 4.3. The running times of this modified algorithm are presented in Figure 6 under the column labeled “Runtime (no deduction)”. While the impact of deduction is not as dramatic as the impact of type-aware hypothesis generation, it nonetheless has a significant impact. In particular, the original algorithm with deduction is, on average, 6 times faster than the modified algorithm with no deduction.

Random example generation. Next, we examined the extent to which the effectiveness of our algorithm depends on the quality of user-provided examples. In particular, we aimed to estimate the behavior of λ^2 on examples provided by a user who has no prior exposure to program synthesis tools. To this end, we built a random example generator that serves as a “lower bound” on a human user of λ^2. The random example generator is, by design, quite naive. For instance, given a program with input type \([\text{list} \{\text{int}\}]\), our example generator chooses a small list length and then populates the list with integers generated uniformly from a small interval. The corresponding output is generated by running a known implementation of the benchmark on this input.

In what follows, we address these questions in more detail.
upon further inspection, this turns out to be due to the naïveté of our random example generator rather than a shortcoming of λ^2. For instance, consider the `member` benchmark which returns true if the input list l contains a given element e. Clearly, any reasonable training set should contain a mix of positive and negative examples. However, when both the list l and the element e are randomly generated, it is very unlikely that l contains e. Hence, many randomly generated example sets contain only negative examples and fail to illustrate the desired concept. However, we believe it is entirely reasonable to expect that a human can provide both positive and negative examples in the training set.

Summary. Overall, our experimental evaluation validates the claim that λ^2 can effectively synthesize representative, non-trivial examples of data structure transformations. Our experiments also show that type-aware inductive generalization and deductive reasoning have a significant impact on the running time of the algorithm. Finally, our experiments with randomly generated input-output examples suggest that using λ^2 requires no special skill on the part of the user.

6. **Related work**

Program synthesis has received much attention from the programming languages community lately. Many of these efforts [Solar-Lezama et al. 2006; Srivastava et al. 2013; Beyene et al. 2014] assume a programmer-provided “template” of the target program. Some others [Kuncak et al. 2010] do not need a template, but require a full logical specification of the target program. In contrast, our method performs synthesis from input-output examples.

Existing synthesis techniques that require only input-output examples are typically restricted to programs over basic data types like numbers [Singh and Gulwani 2012], strings [Gulwani 2011], and tables [Harris and Gulwani 2011], as opposed to recursive data structures. One exception is work by [Albarghouthi et al. 2013], which, like our method, synthesizes recursive programs over data structures. However, this approach is algorithmically quite different from ours: while it uses enumerative search, it does not use types, inductive generalization, or deduction. As we have shown in Sec. 5, these ideas are critical to the performance of our approach.

The work described in [Perelman et al. 2014] gives a generic method for constructing program synthesizers for an arbitrary user-defined domain-specific language (DSL). While our synthesis problem could in principle be expressed in that framework, their synthesis algorithm is again based purely on enumerative search and therefore unlikely to perform well on our experimental benchmarks.

Example-guided synthesis has a long history in the artificial intelligence community [Lieberman 2001; Kitzelmann 2009b; Menon et al. 2013]. Specifically, we build on the tradition of inductive programming [Kitzelmann 2009a; Kitzelmann and Schmid 2006; Lavrac and Dzeroski 1994], where the goal is to synthesize functional or logic programs from examples. Work here falls in two categories: those that inductively generalize examples into functions or relations [Kitzelmann and Schmid 2006], and those that search for implementations that fit the examples [Katayama 2008; Olsson 1995]. Recent work by [Kitzelmann 2011] marries these two strands of research by restricting search to a space of candidate programs obtained through generalization. The main difference between this approach and ours lies in the roles of search and deduction. Specifically, [Kitzelmann 2011] uses deduction to generate candidates for search — i.e., each hypothesis must be deduced from some parent hypothesis. In contrast, we use deduction of examples as a guide to enumerative search. All hypotheses are allowed unless proven otherwise, and if deduction fails, we fall back on exhaustive search. This is a critical advantage because deductive inference is not necessarily applicable for every operator in a programming language.

Since our technique uses types to guide synthesis, another line of related work is *type-directed program synthesis*. In particular, several recent papers use type-guided search to auto-complete program expressions involving complex API calls [Perelman et al. 2012; Gvero et al. 2013; Mandelin et al. 2005]. For instance, the INSynth tool formulates the code completion problem in terms of type inhabitation and generates a rank-ordered list of type inhabitants [Gvero et al. 2013]. While our type-aware inductive generalization can be viewed as a form of type inhabitation problem, we simply use it for pruning the search space. Furthermore, rather than just finding a type inhabitant, our goal is to synthesize a program that is consistent with the input-output examples.

The technique we have proposed in this paper synthesizes a program that is not only consistent with the provided examples but is also a minimum-cost one according to some cost metric. Hence, our approach bares similarity to other efforts for optimal program synthesis [Bloem et al. 2009; Dillig et al. 2014; Chaudhuri et al. 2014]. In addition to addressing a different synthesis domain, we propose a different definition of optimality in this paper.

7. **Conclusion**

We have presented a method for example-guided synthesis of functional programs over recursive data structures. Our method combines three key ideas: type-aware inductive generalization, search over hypotheses about program structure, and use of deduction to guide the search. Our experimental results indicate that the proposed approach is promising.

There are many open directions for future work. We plan to study ways of exploiting parallelism in our synthesis algorithm. We are also interested in using our method for synthesizing proofs. Several recent papers [Sharma et al. 2013; Garg et al. 2014] have studied the synthesis of program proofs from tests (which can be viewed as examples). We believe that λ^2 can be used effectively for this purpose.
<table>
<thead>
<tr>
<th>Name</th>
<th>Runtime (no deduction)</th>
<th>Runtime (no types)</th>
<th>Expert examples</th>
<th>Random examples</th>
<th>Runtime (random)</th>
<th>Extra primitives</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>0.04</td>
<td>0.05</td>
<td>3.87</td>
<td>5</td>
<td>4</td>
<td>0.04</td>
<td>Add a number to each element of a list.</td>
</tr>
<tr>
<td>append</td>
<td>0.23</td>
<td>0.49</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>0.93</td>
<td>Append an element to a list.</td>
</tr>
<tr>
<td>concat</td>
<td>0.13</td>
<td>0.22</td>
<td>68.95</td>
<td>5</td>
<td>23</td>
<td>0.20</td>
<td>Concatenate two lists together.</td>
</tr>
<tr>
<td>dedup</td>
<td>231.05</td>
<td>⊥</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>member</td>
<td>Remove duplicate elements from a list.</td>
</tr>
<tr>
<td>droplast</td>
<td>316.39</td>
<td>⊥</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Drop the last element in a list.</td>
</tr>
<tr>
<td>dropmax</td>
<td>0.12</td>
<td>0.19</td>
<td>77.05</td>
<td>3</td>
<td>7</td>
<td>0.16</td>
<td>Drop the largest number(s) in a list.</td>
</tr>
<tr>
<td>dupli</td>
<td>0.11</td>
<td>0.86</td>
<td>378.35</td>
<td>3</td>
<td>5</td>
<td>0.20</td>
<td>Duplicate each element of a list.</td>
</tr>
<tr>
<td>evens</td>
<td>7.39</td>
<td>45.52</td>
<td>⊥</td>
<td>5</td>
<td>8</td>
<td>30.08</td>
<td>Remove the odd numbers from a list.</td>
</tr>
<tr>
<td>last</td>
<td>0.02</td>
<td>0.06</td>
<td>1.80</td>
<td>4</td>
<td>4</td>
<td>0.03</td>
<td>Return the last element in a list.</td>
</tr>
<tr>
<td>length</td>
<td>0.01</td>
<td>0.14</td>
<td>41.36</td>
<td>4</td>
<td>5</td>
<td>0.04</td>
<td>Return the length of a list.</td>
</tr>
<tr>
<td>max</td>
<td>0.46</td>
<td>9.53</td>
<td>⊥</td>
<td>7</td>
<td>8</td>
<td>8.19</td>
<td>Return the largest number in a list.</td>
</tr>
<tr>
<td>member</td>
<td>0.35</td>
<td>2.87</td>
<td>8</td>
<td>88</td>
<td>1.15</td>
<td>check</td>
<td>Check whether an item is a member of a list.</td>
</tr>
<tr>
<td>multfirst</td>
<td>0.01</td>
<td>0.01</td>
<td>1.82</td>
<td>4</td>
<td>5</td>
<td>0.03</td>
<td>Replace every item in a list with the first item.</td>
</tr>
<tr>
<td>multlast</td>
<td>0.08</td>
<td>0.51</td>
<td>⊥</td>
<td>4</td>
<td>7</td>
<td>0.27</td>
<td>Replace every item in a list with the last item.</td>
</tr>
<tr>
<td>reverse</td>
<td>0.01</td>
<td>0.06</td>
<td>39.03</td>
<td>4</td>
<td>5</td>
<td>0.03</td>
<td>Reverse a list.</td>
</tr>
<tr>
<td>shiftl</td>
<td>0.89</td>
<td>6.23</td>
<td>⊥</td>
<td>5</td>
<td>7</td>
<td>2.19</td>
<td>reverse</td>
</tr>
<tr>
<td>shiftr</td>
<td>0.65</td>
<td>3.79</td>
<td>⊥</td>
<td>6</td>
<td>13</td>
<td>6.58</td>
<td>reverse</td>
</tr>
<tr>
<td>sum</td>
<td>0.01</td>
<td>0.31</td>
<td>44.24</td>
<td>4</td>
<td>4</td>
<td>0.04</td>
<td>Return the sum of a list of integers.</td>
</tr>
<tr>
<td>count_leaves</td>
<td>0.44</td>
<td>2.69</td>
<td>⊥</td>
<td>8</td>
<td>10</td>
<td>0.67</td>
<td>Count the number of leaves in a tree.</td>
</tr>
<tr>
<td>count_nodes</td>
<td>0.62</td>
<td>6.13</td>
<td>⊥</td>
<td>9</td>
<td>1.04</td>
<td></td>
<td>Count the number of nodes in a tree.</td>
</tr>
<tr>
<td>flatten</td>
<td>0.08</td>
<td>0.09</td>
<td>102.24</td>
<td>3</td>
<td>6</td>
<td>0.14</td>
<td>Flatten a tree into a list.</td>
</tr>
<tr>
<td>height</td>
<td>0.10</td>
<td>0.27</td>
<td>83.12</td>
<td>6</td>
<td>7</td>
<td>0.20</td>
<td>Increment each node in a tree by one.</td>
</tr>
<tr>
<td>incret</td>
<td>0.02</td>
<td>0.01</td>
<td>1.90</td>
<td>3</td>
<td>4</td>
<td>0.03</td>
<td>max</td>
</tr>
<tr>
<td>leaves</td>
<td>0.52</td>
<td>1.83</td>
<td>⊥</td>
<td>5</td>
<td>8</td>
<td>0.83</td>
<td>Increment each node in a tree by one.</td>
</tr>
<tr>
<td>maxt</td>
<td>10.59</td>
<td>375.07</td>
<td>⊥</td>
<td>6</td>
<td>43</td>
<td>46.80</td>
<td>Return the largest number in a tree.</td>
</tr>
<tr>
<td>memberbt</td>
<td>4.66</td>
<td>56.80</td>
<td>⊥</td>
<td>12</td>
<td>75</td>
<td>18.07</td>
<td>Check whether an element is contained in a tree.</td>
</tr>
<tr>
<td>selectnodes</td>
<td>15.97</td>
<td>94.91</td>
<td>⊥</td>
<td>9</td>
<td>66.81</td>
<td>join, pr</td>
<td>Return a list of nodes in a tree that match a predicate pr.</td>
</tr>
<tr>
<td>sumt</td>
<td>0.59</td>
<td>5.74</td>
<td>⊥</td>
<td>3</td>
<td>9</td>
<td>1.06</td>
<td>Sum the nodes of a tree of integers.</td>
</tr>
<tr>
<td>tconcat</td>
<td>551.84</td>
<td>⊥</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Insert a tree under each leaf of another tree.</td>
</tr>
<tr>
<td>appendt</td>
<td>1.03</td>
<td>2.44</td>
<td>⊥</td>
<td>5</td>
<td>14</td>
<td>2.57</td>
<td>Append an element to each node in a tree of lists.</td>
</tr>
<tr>
<td>cpdrod</td>
<td>83.83</td>
<td>⊥</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Return the cartesian product of a list if lists.</td>
</tr>
<tr>
<td>dropmins</td>
<td>114.65</td>
<td>452.07</td>
<td>⊥</td>
<td>4</td>
<td>-</td>
<td>min</td>
<td>Drop the smallest number in a list of lists.</td>
</tr>
<tr>
<td>flattenl</td>
<td>0.08</td>
<td>0.11</td>
<td>87.94</td>
<td>5</td>
<td>5</td>
<td>0.15</td>
<td>Flatten a tree of lists into a list.</td>
</tr>
<tr>
<td>incrs</td>
<td>0.12</td>
<td>0.80</td>
<td>⊥</td>
<td>4</td>
<td>4</td>
<td>0.46</td>
<td>Increment each number in a list of lists.</td>
</tr>
<tr>
<td>join</td>
<td>0.43</td>
<td>2.13</td>
<td>⊥</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td>Concatenate a list of lists together.</td>
</tr>
<tr>
<td>prependt</td>
<td>0.01</td>
<td>0.01</td>
<td>3.46</td>
<td>5</td>
<td>4</td>
<td>0.03</td>
<td>Prepend an element to each list in a tree of lists.</td>
</tr>
<tr>
<td>replacet</td>
<td>4.02</td>
<td>10.22</td>
<td>⊥</td>
<td>8</td>
<td>10.94</td>
<td></td>
<td>Replace one element with another in a tree of lists.</td>
</tr>
<tr>
<td>searchnodes</td>
<td>4.28</td>
<td>43.85</td>
<td>⊥</td>
<td>6</td>
<td>31</td>
<td>19.68</td>
<td>member</td>
</tr>
<tr>
<td>sumnodes</td>
<td>0.16</td>
<td>0.43</td>
<td>⊥</td>
<td>4</td>
<td>3</td>
<td>0.34</td>
<td>Replace each node with its sum in a tree of lists.</td>
</tr>
<tr>
<td>sums</td>
<td>0.12</td>
<td>1.26</td>
<td>⊥</td>
<td>5</td>
<td>5</td>
<td>0.54</td>
<td>For each list in a list of lists, sum the list.</td>
</tr>
<tr>
<td>sumtrees</td>
<td>12.10</td>
<td>77.21</td>
<td>⊥</td>
<td>3</td>
<td>5</td>
<td>49.55</td>
<td>Return the sum of each tree in a list of trees.</td>
</tr>
<tr>
<td>Median</td>
<td>0.43</td>
<td>2.13</td>
<td>⊥</td>
<td>4</td>
<td>8</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. χ^2 performance. Times are in seconds. ⊥ indicates a timeout (>10 minutes) or an out of memory condition (>8GB).
References

